Chemical Processing of Biogenic and Anthropogenic Organic Compound Emissions

Paul V. Doskey

Environmental Research Division Argonne National Laboratory Argonne, Illinois

Global Emission Rate (Tg C a⁻¹)

Source	NMOCs	Aerosol Precursors
Biogenic (vegetation, including agricultural crops)	1150	130
Anthropogenic (petroleum fuels — use, distribution, refining)	125	50

Chemical Processing of Terpene Emissions from Forests

CTEF I - Isoprene

CTEF II - Monoterpenes

Chemical Processing of Aromatic Compound Emissions from Urban Areas

(Doskey, P. V. and W. Gao, J. Geophys. Res, 104, 21,263-21,274, 1999.)

CTEF I

Chemical Processing of Isoprene Emissions from a Deciduous Forest

- Intensive Field Campaign
- Diurnal Observations Surface Sites, Aircraft, Tethersondes

Chemistry

Meteorology

Air-Surface Exchange

Modeling Studies Atmospheric Chemistry

Transport

Chemical Measurements

Vertical Profiles - Concentration and Flux

Tracer Experiments

Isoprene, Oxidants, and Oxidation Products

Chemical Flux Measurements from Aircraft

Isoprene Sensor

Proton Transfer Mass Spectrometer

Potential Collaborators and Field Sites

Collaborators

Alex Guenther - NCAR

Paul Shepson - Purdue University

Hal Westberg - Washington State University

ASP Investigators

Tom Jobson

Russell Dietz

Field Sites

PROPHET

NE Texas

Ozarks

Central Valley of California

Field Measurements of Secondary Organic Aerosol Production

Definition - New organic aerosols produced from the chemical oxidation of gas-phase precursors

Aerosol Type	Global Emission Rate (Tg C a ⁻¹)	
Secondary Organic	45-230	
Carbonaceous Soot	5-20	
Biogenic Sulfate	80-150	
Anthropogenic Sulfate	170-250	

Aerosol Yields

Chemical	Aerosol Yield (µg m ⁻³ ppb ⁻¹)	Products
Monoaromatics (C ₇ -C ₉)	0.140-0.580	Organic diacids,
Diaromatics Monoterpenes (C ₁₀ H ₁₆)	0.400-0.600 0.760	multifunctional carbonyls, and organic nitrates
Sesquiterpenes (C ₁₅ H ₂₄)	?	and organic mitrates

Future Research Efforts

- Develop sampling methods that can efficiently separate the vapor and aerosol phases.
- Develop sampling methods that can make measurements over time scales similar to the time scales of changes in precursor emission rates and oxidant concentrations.
- Develop analytic techniques that can measure polar organic compounds in the aerosol phase.

Field Studies

Locations

Coniferous Forest (CTEF II)

Urban Area - Mexico City, Houston

- Long-term monitoring Seasonal Variations
- Intensive Field Campaign

Diurnal Observations - Surface Sites, Aircraft, Tethersondes

Chemistry

Meteorology

Air-Surface Exchange

Modeling Studies Atmospheric Chemistry

Transport